
Week 9 - Monday

 What did we talk about last time?
 Work day
 Before that:
 Function variables
 Passing functions to other functions

 "Secret writing"
 The art of encoding a message so that its meaning is hidden
 Cryptanalysis is breaking those codes
 Now that our Python skills are stronger, we can try to do some

cryptanalysis

 Encryption is the process of taking a message and encoding it
 Decryption is the process of decoding the code back into a

message
 A plaintext is a message before encryption
 A ciphertext is the message in encrypted form
 A key is an extra piece of information used in the encryption

process

 In a transposition cipher, the letters are reordered but their
values are not changed

 Any transposition cipher is a permutation function of some
kind

 In the rail fence cipher, a message is written vertically along a fixed
number of "rails," wrapping back to the top when the bottom is reached

 To finish the encryption, the message is stored horizontally
 This is also known as a columnar transposition
 Encryption of "WE ARE DISCOVERED, FLEE AT ONCE" with three rails:

 Ciphertext: WRIORFEOEEESVELANXADCEDETCJ

W R I O R F E O E

E E S V E L A N X

A D C E D E T C J

 Several chapters ago, our attempt at rail fence encryption was
only an even-odd shuffle

 Now, let's write a function to do a full rail fence encryption
with an arbitrary number of rails

 We need proper encryption and decryption functions if we
want to do cryptanalysis

 Create a list holding number empty strings
 Iterate over all the characters in plaintext
 Use a counter to decide which string in the list to concatenate the

character onto
▪ Hint: The modulus operator lets us wrap around easily

 Concatenate all the strings together
 Note: There are problems if the length of the plaintext isn't evenly

divisible by the number of rows
 Typically, random values are added to pad out the plaintext

def railEncrypt(plaintext, number):

 Although it's not hard to concatenate all the rails together, there is
a Python tool designed for making a string out of everything in a
list
 This tool can also be useful for the ghostwriter project

 String objects have a join()method that will join a list together
into a string, using the string as a separator

words = ['my', 'dog', 'has', 'fleas']
result = ''.join(words) # 'mydoghasfleas'
result = ' '.join(words) # 'my dog has fleas'
result = '|'.join(words) # 'my|dog|has|fleas'
result = 'pig'.join(words) # 'mypigdogpighaspigfleas'

 A little bit of math is useful when doing the rail fence decryption
 Consider where the characters end up from the original plaintext

based on the rails

 The character in location (𝑟𝑟𝑟𝑟𝑟𝑟, 𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) can be found at index
(𝑟𝑟𝑟𝑟𝑟𝑟 � 𝑐𝑐𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙𝑙 + 𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) where 𝑐𝑐𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙𝑙 is the length of a rail

Columns

0 1 2 3 4 5 6 7

Row 0 0 3 6 9 12 15 18 21

Row 1 1 4 7 10 13 16 19 22

Row 2 2 5 8 11 14 17 20 23

 Determine how long the rows are
 Loop over all the columns
 Loop over all the rows
▪ Use the formula 𝑟𝑟𝑟𝑟𝑟𝑟 � 𝑐𝑐𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙𝑙 + 𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 to get the next character in the

output
▪ Concatenate this character to your output string

 Return the output, split into a list of strings

def railDecrypt(ciphertext, number):

 Brute force means trying all possibilities
 For some kinds of encryption, that would mean trying trillions of

possibilities
 For a rail fence cipher, the possible numbers of rails go from 2 up

to the length of the message
 Thus, we can make a simple brute force function that runs our

decryption algorithm with all possible rail sizes

def railBrute(ciphertext):
for i in range(2, len(ciphertext) + 1):

print(railDecrypt(ciphertext, i))

 Although the previous function gets the right answer, we have
to look at all the encryptions to see which one makes sense

 However, if we load a file containing English words into a
Python dictionary, we could see how many real words show
up in each decryption

 Then, we could store the one with the most real English
words, assuming that is the best decryption

 Create an empty dictionary
 Open the file called filename
 Loop over all the lines in the file
 Put each one into the dictionary, with a value of True
 Be sure to clean off the last character of the word (or use the strip() method to

remove whitespace)
 Return the dictionary

 Note: This function only works with a file that contains a single word on each
line

 The value of True is unimportant, we just want to know whether each word is
in the dictionary, and looking up values in a dictionary is faster than a list

def loadWords(filename):

 Now that we can load the dictionary, we can make an automated brute force
function:

 Load the dictionary
 Create a variable for the highest number of words found in a decrypted phrase
 Create a variable for the best decrypted phrase
 Loop over possible rail lengths:
 Decrypt with the given length
 Loop over the words in the decrypted list and count how many are in the dictionary
 If there are more in the dictionary than the highest

▪ Update the highest count and the best decrypted phrase
 Return the best decrypted phrase

def railAutomated(ciphertext):

 This automated approach only works because the encrypted
phrase has spaces in it

 It's not difficult to improve this approach to work even if there
are no spaces in the message
 But the code is much uglier

 The small number of possible rails (which is what makes the
key) makes it easy to brute force a rail fence cipher

 We can map to a random permutation of letters
 For example:

 E("MATH IS GREAT") = "UIYP TQ ABZIY"
 26! possible permutations
 Hard to check every one

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

I N O V Z H A P T R G E U F D W S B Q Y L K M J C X

 More on cryptanalysis
 Doing frequency analysis in Python

 Read 8.4 for Wednesday
 Work on Assignment 7

	COMP 1800
	Last time
	Questions?
	Assignment 7
	Cryptanalysis
	Cryptography
	Encryption and decryption
	Transposition cipher
	Example: Rail Fence Cipher
	Rail fence encryption
	Rail fence algorithm
	Python to make rail fence encryption easier
	Rail fence decryption
	Rail fence decryption
	Brute force cryptanalysis
	Automated brute force
	Loading words into a dictionary
	Automated brute force
	A few observations
	Cryptanalysis of Substitution Ciphers
	Simple monoalphabetic substitution cipher
	Upcoming
	Next time…
	Reminders

